Solubility of Low Volatile Hydrocarbons in Supercritical Ethane ## R. Eustaquio-Rincon Programa de Ingeniería Molecular, Instituto Mexicano del Petróleo, México D. F., Mexico ## A.F. Paz-Menendez Programa de Ingeniería Molecular, Area de Investigación en Termofísica, Instituto Mexicano del Petróleo, México D. F., Mexico ## A. Trejo^{C,S} Competencia de Ciencias Básicas, Instituto Mexicano del Petróleo, México D. F., Mexico Supercritical fluid processes are being used in a lot of applications, including hydrocarbon systems, such as for fractionation of aromatic heavy oil [1], extraction of petroleum hydrocarbons from soil [2], etc. This is due to the special properties of supercritical solvents. Carbon dioxide is an option for extraction of heavy hydrocarbons [3] since CO₂ has many advantages: it is a green solvent, it has a low critical temperature, it is non-flammable, non-toxic, economic, *etc*. In addition, the solubility of heavy hydrocarbons could be improved with the use of cosolvents or entrainers [4]. However, it is important to evaluate other solvents, like light hydrocarbons, in order to establish the best option for extracting heavy hydrocarbons. In this work we report the solubility of n-octacosane in ethane and squalane in ethane both at 308 and 323 K, in the pressure range 10 to 20 MPa. The experimental studies were carried out in a flow apparatus. The extracted solute was determined gravimetrically and the solubility data was determined to \pm 0.0002 mole fraction. The solubility of the hydrocarbons increases as pressure increases but the functionality with pressure shows a special behavior. The solubility data were correlated with the Chrastil equation through density values of ethane. From a comparison of the solubility of n-octacosane in ethane at 323 K with solubility data reported in the literature with CO_2 at the same temperature [5] it was possible to establish that the solubility of the hydrocarbon in ethane is larger two orders of magnitude than that of CO_2 . This result clearly shows that the like dissolves the like. - [1] S.J. Park, C.J. Kim, and B.S. Rhee. Ind. Eng. Chem. Res. 4897-7900, 39(2000). - [2] S. Liang and D.C. Tilotta. Anal. Chem. 616-622, 70(1998). - [3] R. Eustaquio-Rincón and A. Trejo. Fluid Phase Equilib. 231-239, 185(2001). - [4] R. Eustaquio-Rincón and A. Trejo. Submitted to the Fifteenth Symposium on Thermophysical Properties. - [5] M.A. McHugh, A.J.Seckner, and T.J. Yogan. Ind. Eng. Chem. Fundamen. 493-499, 23(1984).